If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=10000
We move all terms to the left:
3x^2-(10000)=0
a = 3; b = 0; c = -10000;
Δ = b2-4ac
Δ = 02-4·3·(-10000)
Δ = 120000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120000}=\sqrt{40000*3}=\sqrt{40000}*\sqrt{3}=200\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200\sqrt{3}}{2*3}=\frac{0-200\sqrt{3}}{6} =-\frac{200\sqrt{3}}{6} =-\frac{100\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200\sqrt{3}}{2*3}=\frac{0+200\sqrt{3}}{6} =\frac{200\sqrt{3}}{6} =\frac{100\sqrt{3}}{3} $
| 8(3s+10)=176 | | Y=5x^2+7x-4 | | 5(q-10)=15 | | 3X*X-4x+9=0 | | 4(x-2)-2(3-2x=3(x-4) | | 0.3=5.1/x | | 4m^2-24m-32=0 | | 8z-6=z | | 9x-8-8-4x=3x-4 | | 10m-34=136 | | 15j+31=616 | | 2b^2+12b=60 | | 4p^2-16p=-12 | | 4.5/9.7=16.9/x | | 10+1/6x=1/2x+6 | | 4/x=32/72 | | 4/5x-5=12+3/5x | | d+39/7=16 | | 7x^2+14x=21 | | 1/2x+6=-1/2x+10 | | 655=5(h-704) | | 7=19/j+74 | | 7=j+74/19 | | 6k^2-90=-12k | | 2x+3=-8+18x | | 253=11(n-976) | | 4(y-5)-y=2 | | 4=-2{1/2x1} | | 31(h+25)=930 | | 6r^2-12r=48 | | 600=65+5j | | 149+5k=794 |